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Abstract
The Floquet quasi-energies and eigenfunctions for the harmonic oscillator
interacting with a monochromatic electric field are obtained by using the
so-called Bargmann–Segal space. The Schrödinger second-order differential
equation in configuration space is transformed into a linear first-order equation
in such a space, which is easily solved by means of an auxiliary system (called
the Lagrange system) of ordinary differential equations. This method compares
favourably with others previously used.

PACS number: 03.65.Fd

1. Introduction

The second-order Schrödinger differential equation represents one of the greatest achievements
of quantum mechanics, so that any method to solve it in a simple way should be considered
as an important step in the theory of Schrödinger solutions. In this context, we refer to the
Bargmann–Segal (BS) [1] transformation, which is a useful method often applied to solve
some problems [2, 3], by using well known properties of the boson operators. Applying this
transformation to other systems, such as the harmonic oscillator interacting with an external
field, should be the next step to consider. Although these kinds of problems have been solved
before via traditional analytical methods [4], operator algebra techniques [5] and the path
integration method [6], it is important to look for those which lead more easily to the exact
solutions.
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0305-4470/02/020419+06$30.00 © 2002 IOP Publishing Ltd Printed in the UK 419

http://stacks.iop.org/ja/35/419


420 A Palma et al

The organization of the paper is as follows: in section 2 we start with the original heuristic
proposal of Fock [7], masterfully discussed by Dirac [8] and several years later rigorously
justified by Bargmann [9] and Segal [10]. In the BS representation it is well known [1, 8]
that the harmonic oscillator wavefunctions are monomials, in clear contrast with the Hermite
polynomials multiplied by a Gaussian function which are the solutions in the configuration
space; this simplification plays a key role in our work. Although for the quantum forced
harmonic oscillator the path integration method [11] has been successfully used and even a
relationship of this method has been found with the BS variables [12], in section 3 we will
show how the use of a technique developed by Lagrange leads to the Floquet eigenfunctions
and quasi-energies in a straightforward way. Finally, in section 4 some conclusions are given.

2. The Bargmann–Segal transformation

A long time ago Fock [7] proposed an operator solution to the commutator relation

[a, a†] = 1 (1)

where a and a† are the annihilation and creation operators associated with the harmonic
oscillator. This solution can be formulated in the field of complex numbers if we consider[

d

dz
, z

]
= 1 (2)

where z is a complex variable and thus we have the transformation rule

a† → z a → d

dz
. (3)

The Hamiltonians that are written in the second quantization language can be transformed to
the BS space by applying this rule; a trivial example is the harmonic oscillator itself:

H = a†a +
1

2
−→ H = z

d

dz
+

1

2
. (4)

The solution to the eigenvalue equation via this transformed Hamiltonian is easily found to be

χn(z) = zn En = n + 1
2 (n positive integer). (5)

The quantization in this case (n positive integer) does not follow from a boundary condition,
as in the configuration space, but from the analyticity of the complex variable function. The
rigorous mathematical justification of the transformation rule (equation (3)) was given in the
paper by Bargmann [9], Segal [10] (in this reference it is called the holomorphic functional
representation) and Cook [13], where the general problem of changing space was dealt with
by means of a linear transformation between two Hilbert spaces: the usual configuration space
and the entire space of complex functions [14].

3. The Floquet theorem and the Lagrange system

Let us consider a particle in a harmonic potential interacting with an external monochromatic
field. By introducing the boson operators, the time-dependent Schrödinger equation in the
configuration space is

H� = i
∂�

∂t
(6)

where the Hamiltonian is given by

H = ω0(2a†a + 1) +
λ√
2ω0

(a + a†) cosωt. (7)
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The last term represents the interaction between the particle and the semiclassical electric field
of frequency ω, and ω0 is the frequency associated with the oscillator. It is well known [15]
that there exist solutions of equation (6) of the form

�n
F (x, t) = exp

[−iEn
F t

]
�n

F (x, t). (8)

En
F is the so-called Floquet quasi-energy and �n

F (x, t) is a periodic function of time, with the
same periodicity of the Hamiltonian, i.e.

�n
F (x, t + T ) = �n

F (x, t) T = 2π

ω
. (9)

When using the BS space, the time-dependent Schrödinger equation becomes[
ω0

(
2z

d

dz
+ 1

)
+

λ√
2ω0

(
d

dz
+ z

)
cos ωt

]
� = i

∂�

∂t
(10)

where� = �(z, t). This equation is a first-order linear partial differential equation, involving
an unknown function � and two independent variables z and t, that can be written in the
following way:

P
∂�

∂z
+ Q

∂�

∂t
= R (11)

where P, Q and R are functions of �, z and t. Now, according to a method proposed by
Lagrange (see, e.g., [16]), which states that the general solution will be φ(u, v) = 0, provided
u(z, t,�) = A and v(z, t,�) = B, there are two independent solutions of the following
auxiliary system (called the Lagrange system):

dz

P
= dt

Q
= d�

R
(12)

whereA and B are integration constants. We also note that the functional form of φ is arbitrary.
Using the values of P, Q and R that result after writing the Lagrange system for equation

(10), we take the first and second members of equation (12) as our first auxiliary equation

dz

2ω0z + λ cosωt√
2ω0

= dt

−i
. (13)

In order to solve this equation we make a change of variable z(t) = M(t) e2iω0t . Although this
may seem contradictory, since z and t are considered independent variables above, we stress
that the basic assumption in the Lagrange method is that the independent variables appearing
in equation (11) must be considered as dependent variables when solving the auxiliary system.
Introduction of the change of variable in equation (13) leads to the following:

dM

dt
= λi√

2ω0
e−2iω0t cosωt (14)

which after integration gives for z(t) the value

z = γ ∗ + A e2iω0t (15)

where A is an arbitrary constant and γ is given by

γ (t) = λ√
2ω0

(
ω2 − 4ω2

0

) {2ω0 cos ωt − iω sin ωt} . (16)

The first solution of the Lagrange system can be written as

u(z, t) = (z − γ ∗) e−2iω0t = A. (17)
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Now, by making use of equation (12) for our second auxiliary equation

dt

−i
= − d�(

ω0 + λz cosωt√
2ω0

)
�

(18)

which can be integrated as an ordinary differential equation to obtain

−iEt − λi

2ω
√

2ω0
γ ∗ sinωt + Aγ e2iω0t − ln� = ln L (19)

where L is an integration constant and

E = ω0 +
λ2

2
(
ω2 − 4ω2

0

) . (20)

The solution of the second Lagrange equation can be written as

v(z, t,�) = e−iEt eβ+γ z�−1 = B (21)

where B is a constant and

β(t) = −iλ sinωt

2ω
√

2ω0
γ (t) − ω0

4

{
2λ

ω2 − 4ω2
0

}2

. (22)

In order to proceed we need a specific functional form for the general solution φ(u, v). Based
on the fact that the Floquet functions resulting in our approach become the harmonic oscillator
functions when the field amplitude goes to zero, we propose for φ(u, v) the following form:

φ(u, v) = u−n − v (n positive integer). (23)

This choice of φ provides us with the Floquet functions �n
F (z, t) in the BS space, with the

Floquet quasi-energies given by

En
F = ω0(2n + 1) +

λ2

2
(
ω2 − 4ω2

0

) (24)

and the corresponding functions �n
F (z, t) are

�n
F (z, t) = eβ(t) eγ (t)z(z − γ ∗)n. (25)

These functions satisfy the condition of periodicity imposed by the Floquet theorem, since both
γ and β have period T, as can be seen in equations (16) and (22). On the other hand, just as in
the harmonic oscillator case, the quantization (n a positive integer) comes from the analyticity
condition that the functions must satisfy (i.e. they must have derivatives everywhere except at
z = ∞). It can also be seen that in the limit λ → 0, both γ and β approach zero, so that the
functions �n

F approach zn, the harmonic oscillator functions in the BS space, and the Floquet
quasi-energiesEn

F approach ω0(2n + 1).
Finally, if we want to transform this solution to the configuration space, we use the

displacement operator, so that

(z − γ ∗)n = e−γ ∗ d
dz zn. (26)

Bearing in mind that the harmonic oscillator eigenfunctions in the BS space are χn(z) = zn,
and that the annihilation operator is d

dz , we can write �n
F in the configuration space as

�n
F (x, t) = eβ(t) eγ (t)a

†
e−γ ∗(t)aχn(x) (27)

which agrees with the solutions previously obtained [5]. For the sake of completeness, we
also note that this equation can be rearranged as

�n
F (x, t) = eδ(t) eε(t)(a+a†) e−η(t)(a−a†)χn(x) (28)
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where

δ(t) = iλ2

4ω

4ω2
0 + ω2

(
ω2 − 4ω2

0

)2 sin 2ωt (29)

ε(t) = −iλω√
2ω0

(
ω2 − 4ω2

0

) sinωt (30)

η(t) =
√

2ω0λ

ω2 − 4ω2
0

cosωt. (31)

Using the definitions of a, a† in terms of x and d/dx, and the displacement operator again,
�n

F (x, t) can be written as

�n
F (x, t) = eδ(t) e

√
2ω0 ε(t)xχn(x − xc(t)) (32)

where

xc(t) = 2λ

ω2 − 4ω2
0

cosωt. (33)

This form coincides with the solution given by Breuer and Holthaus [15].

4. Conclusions

We have presented a new and simple method to obtain the Floquet quasi-energies and
functions for a harmonic oscillator with an external monochromatic field. The simplicity
results from working in the BS space, where the wave equation becomes a first-order partial
differential equation as compared with the usual second-order Schrödinger equation. This
method compares favourably with a previous one [5] based on the Lie algebraic techniques,
the advantage being that the present approach is almost straightforward at least for the case
presented here. Although Husimi and the path integration methods are more transparent from
the physical point of view, the mathematical details are more cumbersome than the method
presented here. However, the application to some other cases is in progress. A study of the
relationship between the path integration method and the actual analysis is also under way.
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